منابع مشابه
Concerning weak ∗ - extreme points
Every separable nonreflexive Banach space admits an equivalent norm such that the set of the weak-extreme points of the unit ball is discrete.
متن کاملExtreme Points of Vector Functions
Several previous investigations have appeared in the literature which discuss the nature of the set T in »-dimensional space spanned by the vectors ifsdui, ■ ■ ■ , fsdp.n) where 5 ranges over all measurable sets. It was first shown by Liapounov that xi ui, • • ■ , un are atomless measures, then the set F is convex and closed. Extensions of this result were achieved by D. Blackwell [l] and Dvore...
متن کاملDeep Extreme Cut: From Extreme Points to Object Segmentation
This paper explores the use of extreme points in an object (left-most, right-most, top, bottom pixels) as input to obtain precise object segmentation for images and videos. We do so by adding an extra channel to the image in the input of a convolutional neural network (CNN), which contains a Gaussian centered in each of the extreme points. The CNN learns to transform this information into a seg...
متن کاملOn the Extreme Points and Strongly Extreme Points in Köthe–bochner Spaces
We give the necessary conditions of extreme points and strongly extreme points in the unit ball of Köthe–Bochner spaces. The conditions have been shown to be sufficient earlier.
متن کاملA simplex with dense extreme points
© Annales de l’institut Fourier, 1961, tous droits réservés. L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1981
ISSN: 0002-9947
DOI: 10.1090/s0002-9947-1981-0613797-5